a2 United States Patent

Hwang et al.

US009465694B2

US 9,465,694 B2
Oct. 11, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
RECOVERING PARTITION BASED ON FILE
SYSTEM METADATA

(71) Applicant: ELECTRONICS AND
TELECOMMUNICATIONS
RESEARCH INSTITUTE, Dacjeon
(KR)
(72) Inventors: Hyunuk Hwang, Daejeon (KR);
Kibom Kim, Daejeon (KR);
Seungyong Lee, Dacjeon (KR)
(73) Assignee: ELECTRONICS AND
TELECOMMUNICATIONS
RESEARCH INSTITUTE, Dacjeon
(KR)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 119 days.
(21) Appl. No.: 14/547,248
(22) Filed: Nov. 19, 2014
(65) Prior Publication Data
US 2016/0077918 Al Mar. 17, 2016
(30) Foreign Application Priority Data
Sep. 16, 2014 (KR) .ceovevvvvecrecienee 10-2014-0122563
(51) Imt.CL
GO6F 11/00 (2006.01)
GO6F 11/14 (2006.01)
GO6F 11/20 (2006.01)
(52) US. CL
CPC ... GO6F 11/1435 (2013.01); GO6F 11/1451
(2013.01); GO6F 11/1469 (2013.01);
(Continued)
(58) Field of Classification Search
CPC .ot GOG6F 11/2058
USPC oot 714/6.23, 15, 16, 20

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,006,125 B1* 8/2011 Mengcccoeceevenee GOGF 11/1417
714/6.2
2004/0153724 Al* 82004 Nicholson GOGF 11/0709
714/6.11

(Continued)

FOREIGN PATENT DOCUMENTS

KR 10-0308873 Bl 11/2001
KR 10-2008-0107629 A 12/2008
(Continued)

OTHER PUBLICATIONS

Soon Hwan Kim et al., “NTFS File System Recovery,” Journal of
Korean Institute of Information Scientists and Engineers, vol. 31,
No. 2, (https://dbpia.co kr/Journal/ArticleDetail/446046) Oct. 2004.

(Continued)

Primary Examiner — Dieu-Minh Le
(74) Attorney, Agent, or Firm — LRK Patent Law Firm

(57) ABSTRACT

A method and apparatus for recovering a partition based on
file system metadata, which calculate core information nec-
essary for the recovery of a partition using only the MFT
entry information of $MFT and recover a deleted partition
when an MBR and a GPT that correspond to the partition
configuration information of a disk and a BR and a BBR that
store the configuration information of a volume are deleted
or destroyed. The method includes determining an unallo-
cated area in a disk or an evidence image, collecting MFT
entries from the unallocated area, generating MFT partition
candidate information by analyzing the MFT entries, and
creating information enabling a layout of a partition to be
reconfigured based on the MFT partition candidate infor-
mation, and creating a tree structure using the created
information and the MFT entries.

16 Claims, 15 Drawing Sheets

ACCESS DISK OR
EVIDENCE IMAGE AND READ DATA

[~510

)

DETERMINE UNALLOCATED AREA }\-‘SZO

1

| COLLECT MFT ENTRY INFORMATION |'\-1530

1

CREATE MFT PARTITION
CANDIDATE INFORMATION BASED
ON MFT ENTRY INFORMATION

~S40

1

CALCULATE BOOT RECORD LOCATION
AND VOLUME SIZE BASED ON MFT
PARTITION CANDIDATE INFORMATION

[~S50

v

CREATE VIRTUAL VOLUME STRUCTURE
AND PERFORM PARTITION RECOVERY

[~ 560

US 9,465,694 B2
Page 2

(52) US.CL

CPC ... GOG6F11/2058 (2013.01); GOGF 11/2069
(2013.01); GO6F 11/1417 (2013.01); GO6F
2201/84 (2013.01)

(56)

References Cited

U.S. PATENT DOCUMENTS

2005/0193035 Al*
2010/0332744 Al*

2011/0055163 Al
2011/0202794 Al1*

2012/0066546 Al
2014/0059313 Al

9/2005
12/2010

3/2011
8/2011

3/2012
2/2014

Byme ...
Khosravi

Hwang et al.
Kim .o

Kim
Hwang et al.

GO6F 11/1471
GO6F 21/6218
711/112

GO6F 11/1417
714/15

FOREIGN PATENT DOCUMENTS

KR 10-2011-0021125 A 3/2011
KR 10-2011-0094468 A 8/2011
KR 10-2014-0026821 A 3/2014
WO 01/27860 A2 4/2001

OTHER PUBLICATIONS

Jaeung Namgung et al., “A research for partition recovery method
in a forensic perspective,” Journal of the Korea Institute of Infor-
mation Security & Cryptology (JKIISC), vol. 23, No. 4, Aug. 2013,
Republic of Korea.

Jong-Hyuk Park, “File System and File Recovery (Introduction of
File System),” UCS Lab, Dec. 31, 2012.

* cited by examiner

US 9,465,694 B2

Sheet 1 of 15

Oct. 11, 2016

U.S. Patent

Q3LVYDIANI SI NOILVDO1 V1VO
LNIH3441Q A13L13TdWOD "INIY¥IAHIQ
SI INIOd 3DN3H3I438 NIHM

14V 3LV
19

-

d31SNTD 000'ST ‘HIONIT

i

NOILLVOQOT v1ivd .EZGEO'J

SIS,

AN

!

000'ST ¥31SNTD viva

i

- Q3A0Y1S53d

LIN3ISTHd F4V SATHLNT 14N 4O TV 40 INOS

NMON> 39
LONNVD JANNTOA 40 |
NOLLYDQT SNILYVILS

i
=i

N

2K

.......»\\ Z
422

S

o P/SHHYY

000'ST ¥31SN1D vLva
00T -dI L4N

U.S. Patent Oct. 11, 2016 Sheet 2 of 15 US 9,465,694 B2

MFT PARTITION
150 CREATION
UNIT
MFT ENTRY
140~ ANALYSIS
UNIT
3
MFT ENTRY
130——| coLLECcTION
UNIT
N / 20 60
\ ! 2 ?
10~ MEMORY |le——»{ PROCESSOR SCREEN

| | |
| | |

STORAGE INPUT DEVICE NETWORK
DEVICE S
30 40 50

FIG. 2

US 9,465,694 B2

Sheet 3 of 15

Oct. 11, 2016

U.S. Patent

01

{

IOVINI
3DN3AIAI

¢ Ol
LINn 1IN
LINN LINN LINN
DVREINT H NOTava H SISAIVNY HNoLDa100 HNOWYNIELEA - LIND
439N NOLLLLYYA 1 5INT 14 | | AMINT L9 v3dy SERRL
LIW Q3LYIOTIVNN
091 05T ovT 0£T 0zt 0Tt

ASIA

001

US 9,465,694 B2

Sheet 4 of 15

Oct. 11, 2016

U.S. Patent

000000000 COCO0000000OQC00O00 : 4E0VT
000000 0000000000 COC0000 [9TOVI
ooooimmeoooooooooDoDDDUDD“ 3461
Ood CO0CO00000000000000 - #2496t
Oo0l (100 OOCO0O0O000000 - 96461
00g Ol ___H__D_ I |l _J“.l. mm_mr If _] : mﬁmw
O OOO0O0OO000000 0000 :
VIV v1va 43ivooT1v O O uDDDDDDDDDDDDDDDDDDDDDDUDD : 02461
IC QOg OO0 0O000000 3 : /4361
Il a (0] 10000000 DD : 30361
OOO0O00880000CO00000180000000008 - Svasel
DDDDDDDDDDDDDDDDDDDDDDDDDDDDD_H_ : DL361
0000000000 CODOOD0O0000C0OORO0OCOO £5361
VYV Y1vVAd A3lLvOOTIVNN 00000000000 DO0O00O00000000000O0 : VZI6T
OC0O00Q000000 coooooocooooocooooo: [0I6T
0000000000000 00 o000 1000 _J“mn_omﬁ
DD _ _:ﬁ Oocioon 0 1O00000 - 4va6eT
D0 000l OOO0O000C0O0 _H_DD 1 98061
DDDDDDDDDDDDDDD_U_H_DDDDDDDDDDDDD :asdel
OOO0OOO0O0000O00O0C0000O0O000000000000 - #£asl

[Jooo

0000
0000
0000
YUV VIvd J3LVD0TIVNN o 0o0n

OCJooo

]
O
O
O
O

D

lrl.r P
l.rl..- -

¥g dMiDve // ;,,/,Mm,m_,\, n_mm:z: \\\

o (1v4) Y ¥ O Ny
d (S4LN) ¥
Z#NOILLLLYYd | € q g
AUVARID | @ 814 T#NOILLY¥Yd | € N
~ —
\Y4
MSIa

U.S. Patent

Oct. 11, 2016 Sheet 5 of 15 US 9,465,694 B2
(START j
ACCESS DISK OR | 510
EVIDENCE IMAGE AND READ DATA
DETERMINE UNALLOCATED AREA [|~S20
COLLECT MFT ENTRY INFORMATION (~S30
CREATE MFT PARTITION
CANDIDATE INFORMATION BASED [~S40
ON MFT ENTRY INFORMATION
CALCULATE BOOT RECORD LOCATION 550
AND VOLUME SIZE BASED ON MFT [
PARTITION CANDIDATE INFORMATION
CREATE VIRTUAL VOLUME STRUCTURE | .

AND PERFORM PARTITION RECOVERY

!
(END)

FIG. 5

U.S. Patent Oct. 11, 2016 Sheet 6 of 15

US 9,465,694 B2

READ UNALLOCATED AREA
ON SECTOR BASIS

~—5110

!

> ANALYZE MFT ENTRY HEADER

~5112

S114

YES

NO

STORE CORRESPONDING
SECTOR LOCATION

~S5116

!

READ BY JUMPING TO
SECTOR BY MFT ENTRY SIZE

~S5118

$120

READ SUBSEQUENT SECTOR
IN UNALLOCATED AREA

END

FIG. 6

U.S. Patent

Oct. 11, 2016 Sheet 7 of 15

(START)

US 9,465,694 B2

READ COLLECTED

ATTRIBUTES OF MFT ENTRY

MFT ENTRY INFORMATION 5130
READ CORRESPONDING

SECTOR S132

ANALYZE $FILENAME <134

5136

<t

YES

DETERMINE WHETHER $MFT
FILE IS DATA CLUSTER OF
$MFT OR $MFTMirr

—~— 5138

!

STORE MFT PARTITION
CANDIDATE INFORMATION

~—S5140

'

$142

READ SUBSEQUENT MFT

ENTRY INFORMATION

R
(END)

FIG. 7

U.S. Patent Oct. 11, 2016 Sheet 8 of 15 US 9,465,694 B2

START

READ MFT PARTITION
CANDIDATE INFORMATION

!

READ CORRESPONDING
SECTOR S152

Y

CALCULATE BOOT
RECORD LOCATION

—~—S5150

—]

~- 5154

NO

METADATA MFT
ENTRY?

YES
CALCULATE VOLUME SIZE SET DEFAULT

S158 S160
’ r -~

S162
NO

YES Iy

PARSE MFT ENTRIES Sle4

!

CREATE TREE STRUCTURE [~—5166

{ 5168

READ SUBSEQUENT MFT
PARTITION CANDIDATE
INFORMATION

L J

(END)

[

FIG. 8

U.S. Patent Oct. 11, 2016 Sheet 9 of 15 US 9,465,694 B2

(START)
Y

ANALYZE MFT ENTRY #0
($MFT) OF $MFT

Y

PARSE $DATA ATTRIBUTES |~—S172

!

ANALYZE NON-RESIDENT
ATTRIBUTE HEADER OF $DATA

!

ANALYZE CLUSTER RUN LIST
OF $DATA ATTRIBUTES

Y

CALCULATE LOCATION OF
BOOT RECORD

Y
(END)

—~-S5170

5174

~-S176

~-5178

FIG. 9

U.S. Patent

Oct. 11, 2016 Sheet 10 of 15

(START)
!

ANALYZE MFT ENTRY #6

($Bitmap) OF $MFT 5180
1
PARSE $DATA ATTRIBUTES ~—-S5182
ANALYZE N(iN—RESIDENT <184
ATTRIBUTE HEADER OF $DATA
Y
CALCULATE TOTAL VOLUME SIZE [—~-S186

END

FIG. 10

US 9,465,694 B2

U.S. Patent

Oct. 11, 2016 Sheet 11 of 15

ENTRY | NAME DESCRIPTION
0 | $MFT | FILE CONTAINING MFT INFORMATION
1 | $MFTMirr | BACKUP COPY OF $MFT FILE
2 | $LogFile | CONTAIN TRANSACTION JOURNAL RECORD
3 | ¢volume | CONTAIN INFORMATION ABOUT VOLUME,
SUCH AS LABEL AND VERSION OF VOLUME
4 | sAtrDef | CONTAIN VARIOUS ATTRIBUTE VALUES, SUCH AS
PARAMETER VALUES, NAMES AND SIZES
5 | .(Dot) | CONTAIN ROOT DIRECTORY OF FILE SYSTEM
6| $Bitmap | [EORMATION OF FILE SYSTEM oo
7 | $Boot | CONTAIN INFORMATION ABOUT BOOT RECORD AREA
8 | $BadClus | CONTAIN INFORMATION ABOUT BAD CLUSTERS
9 | ssecure | CONTAIN INFORMATION ABOUT SECURITY AND
ACCESS RIGHT OF FILES
10 | $Upcase | CONTAIN ALL UNICODE UPPERCASE CHARACTERS
11 | $Extend | DIRECTORY CONTAINING OPTIONAL EXTENSIONS,
AND FILES ARE NOT PRESENT IN DIRECTORY IN MS
12~15 | <Unused> | NOT USED
16~23 | <Unused>| NOT USED
ANY | $Objid | CONTAIN UNIQUE ID INFORMATION OF FILE
ANY | $Quota SgEl\'le/(:\érElJ IOI‘:II_I;‘())RMATION ABOUT AMOUNT
ANY |$Reparse | CONTAIN INFORMATION ABOUT REPARSE POINTS
ANY | $usnjmi | FILE SI‘E)JEIEJDG RECORDS WHEN FILE OR DIRECTORY

FIG. 11

US 9,465,694 B2

U.S. Patent Oct. 11, 2016 Sheet 12 of 15 US 9,465,694 B2
OFFSET NAME DESCRIPTION
0~3 | SIGNATURE 'FILE' CHARACTER STRING
4~5 | OFFSET OF FIXUP ARRAY LOCATION OF FIXUP ARRAY
NUMBER OF ITEMS IN FIXUP
6~7 | COUNT OF FIXUP VALUE ARy
LOCATION VALUE OF
8~15 |LOGFILE SEQUENCE NUMBER | —o-ie =t O
16~17 | SEQUENCE VALUE SEQUENCE VALUE
18~19 | HARD LINK COUNT NUMBER OF HARD LINKS
OFFSET AT WHICH FIRST
20~21 | OFFSET TO FIRST ATTRIBUTE | 7 n) o S
STATUS OR ATTRIBUTE
22~23 | FLAGS INFORMATION OF MFT ENTRY
ACTUALLY USED SIZE OF
24~27 | USED SIZE OF MFT ENTRY MIFT ENTRY
MFT ENTRY ALLOCATION
28~31 | ALLOCATED SIZE OF MFT ENTRY | g7 3ot
IN CASE OF NON-BASE
3239 sl‘i-:ET "Eﬁf&fNCE TO BASE MFT ENTRY, FILE REFERENCE
ADDRESS OF BASE MFT ENTRY
IDS OF ATTRIBUTES
40~41 | NEXT ATTRIBUTE ID ALLOCATED ONLY IN MFT
ENTRY
42~43 | PADDING PADDING WITH 00 00
44~47 | $MFT RECORD NUMBER MET IDENTIFIER

FIG. 12

US 9,465,694 B2

U.S. Patent Oct. 11, 2016 Sheet 13 of 15

OFFSET NAME DESCRIPTION

0~3 | ATTRIBUTE IDENTIFIER CODE ATTRIBUTE HEADER

4~7 | LENGTH OF ATTRIBUTE ATTRIBUTE LENGTH

8~8 | NON-RESIDENT FLAG NON-RESIDENT FLAG

9~9 | LENGTH OF NAME LENGTH OF ATTRIBUTE NAME

10~11 | OFFSET TO NAME ATTRIBUTE NAME LOCATION
VARIOUS STATUS FLAGS OF

12~13 | FLAGS ATTRIBUTES (COMPRESSION,
ENCRYPTION, SPARSE)

14~15 | ATTRIBUTE IDENTIFIER UNIQUE ATTRIBUTE VALUE

RESIDENT ATTRIBUTES(USE WHEN NON-RESIDENT FLAG IS '00")

16~19 | SIZE OF CONTENT SIZE OF ATTRIBUTE CONTENT

20~21 | OFFSET TO CONTENT iﬁ#ﬁgﬁ%‘-@gﬁ}"ﬁ'}{ OF
FLAG INDICATING WHETHER

22~22 | INDEXED FLAG GIVEN ATTRIBUTE IS ATTRIBUTE
USED FOR SEARCHING

23~23 | PADDING PADDING

24~ | NAME OF ATTRIBUTE(NAMED ATTRIBUTE) | NAME OF ATTRIBUTE

24~ | START OF ATTRIBUTE(UN-NAMED

ATTRIBUTE)

START OF ATTRIBUTE

NON-RESIDENT ATTRIBUTES{USE WHEN NON-RESIDENT FLAG IS '01")

16~23 | STARTING VCN OF THE RUNLIST | STARTING VCN OF RUN LIST
24~31 | ENDING VCN OF THE RUNLIST ENDING VCN OF RUN LiST
32-33 | OFFSET TO OF THE RUNLIST LOCATION OF RUN LIST
34~35 | COMPRESSION UNIT SIZE SIZE OF COMPRESSION UNIT
36-39 | PADDING PADDING
TOTAL SIZE OF CLUSTER 70
40~47 | ALLOEATED SIZE OF ATTRIBUTE WHICH ATTRIBUTE DATA IS
ALLOCATED (BYTES UNIT)
- REAL TOTAL CLUSTER SIZE
48~55 | REAL SIZE OF ATTRIBUTE CONTENT | REAL TOTAL CLUSTE
INITIALIZED TOTAL CLUSTER
56~63 | CoNqErsy S2n OF ATTRIBUTE SIZE OF ATTRIBUTE DATA
(BYTES UNIT)
| CLUSTER DATA RUN ST
64~ | (UNNAMED STREAM) RUN LIST
64~ | ATTRIBUTE NAME(NAMED STREAM) | ATTRIBUTE NAME

FIG. 13

U.S. Patent Oct. 11, 2016 Sheet 14 of 15 US 9,465,694 B2
OFFSET NAME DESCRIPTION
~ ~ ATTRIBUTE HEADER
FILE REFERENCE ADDRESS
0~7 | PARENT DIRECTORY REFERENCE | (U= 0y =it o oo
8~15 | FILE CREATED DATE TIME STAMP | CREATION TIME
16~23 | FILE MODIFIED DATE TIME STAMP | MODIFICATION TIME
24~31 | ENTRY MODIFIED DATE TIME STAMP | MFT MODIFICATION TIME
32~39 | LAST ACCESSED DATE TIME STAMP | ACCESS TIME
40~47 | PHYSICAL FILE SIZE ALLOCATION SIZE OF FILE
48~55 | LOGICAL FILE SIZE REAL SIZE OF FILE
56~59 | DOS FILE ATTRIBUTES FLAG
60~63 | EXTENDED ATTRIBUTES/REPARSE | REPARSE VALUE
64~64 | FILE NAME LENGTH NAME LENGTH
(NUMBER OF CHARACTER)
65~65 | NAMESPACE TYPE NAME FORMAT
00 - POSIX
01 - WIN32
02 - DOS SHORT FILE NAME
03 - IDENTICAL IN WIN32/
DOS
66~ | FILE NAME(UNICODE) NAME

FIG. 14

U.S. Patent Oct. 11, 2016 Sheet 15 of 15 US 9,465,694 B2

N-TH PRESENT BYTE | CORRESPONDING CLUSTER
00000001 (N x 8) - TH CLUSTER
00000010 (Nx8) + 1-TH CLUSTER
00000100 (N x 8) + 2-TH CLUSTER
00001000 (N x8) + 3~ TH CLUSTER
00010000 (N x8) + 4 - TH CLUSTER
00100000 (N x8) +5-TH CLUSTER
01000000 (N x 8) + 6 - TH CLUSTER
10000000 (N x8) +7-TH CLUSTER

FIG. 15

US 9,465,694 B2

1

METHOD AND APPARATUS FOR
RECOVERING PARTITION BASED ON FILE
SYSTEM METADATA

CROSS REFERENCE TO RELATED
APPLICATION

This application claims the benefit of Korean Patent
Application No. 10-2014-0122563, filed Sep. 16, 2014,
which is hereby incorporated by reference in its entirety into
this application.

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates generally to a method and
apparatus for recovering a partition based on file system
metadata and, more particularly, to a method and apparatus
for recovering a partition using metadata in which the
principal information of a file system is stored, in a situation
in which the partition configuration information of a disk is
not present.

2. Description of the Related Art

The partitions of a computer storage device are managed
via a Master Boot Record (MBR) or a Globally Unique
Identifier (GUID) Partition Table (GPT).

When an MBR or a GPT is analyzed, the location of a
boot record for managing information about a volume can be
found. By means of information about the boot record, the
basic information of each partition and the starting location
of metadata information in a file can be found.

The malicious codes, used in the 3.20 and 6.25 cyber
terror attacks in South Korea in 2013 to destroy hard disks,
may destroy core information for the partition configuration
of a disk, such as an MBR, a GPT, and a boot record. Due
thereto, even if actual contents of a file are not completely
deleted, the effect of destroying data and a disk may be
exhibited. That is, as shown in FIG. 1, the Master File Table
(MFT) entries of SMFT, in which actual data information is
stored, remain complete or are only partially damaged, but
it is impossible to know the layout of a partition. Even if the
address of a data cluster recorded in MFT data entries is
obtained, a boot record, which is a reference point for the
start of a volume, was already deleted. Therefore, exact data
access is impossible with the address of a data cluster.

As shown in FIG. 1, when all of an MBR, a BR, and a
Backup Boot Record (BBR) are deleted in a disk structure
shown in an upper portion of FIG. 1, the disk structure is
converted into and present as that shown in a lower portion
of FIG. 1. In this case, when the data cluster number of a file
having an MFT Identifier number of 100 is 15,000, a precise
data location may be detected if the starting location of a
volume is known. However, when a partition layout is not
present, a reference point cannot be known, and thus a
completely different location may be indicated, as in the disk
structure shown in the lower portion.

As related preceding technology, Korean Patent Applica-
tion Publication No. 2011-0021125 discloses technology for
recovering a deleted partition using information found by
searching for an existing undeleted boot record.

As another related preceding technology, Korean Patent
Application Publication No. 2014-0026821 discloses tech-
nology for recovering deleted partition information by
searching for a backup boot record that is backed up in a file
system.

SUMMARY OF THE INVENTION

Accordingly, the present invention has been made keep-
ing in mind the above problems occurring in the prior art,

10

20

25

30

35

40

45

50

55

60

65

2

and an object of the present invention is to provide a method
and apparatus for recovering a partition based on file system
metadata, which calculate core information necessary for the
recovery of a partition using only the MF T entry information
of SMFT and recover a deleted partition when an MBR and
a GPT that correspond to the partition configuration infor-
mation of a disk and a BR and a BBR that store the
configuration information of a volume are deleted or
destroyed.

In accordance with an aspect of the present invention to
accomplish the above object, there is provided a method for
recovering a partition based on file system metadata, includ-
ing determining, by an unallocated area determination unit,
an unallocated area in a disk or an evidence image; collect-
ing, by a Master File Table (MFT) entry collection unit,
MEFT entries from the unallocated area; generating, by an
MEFT entry analysis unit, MFT partition candidate informa-
tion by analyzing the MFT entries; and creating, by an MFT
partition creation unit, information enabling a layout of a
partition to be reconfigured based on the MFT partition
candidate information, and creating a tree structure using the
created information and the MFT entries.

Determining the unallocated area may include classifying
the disk or evidence image into an allocated area and an
unallocated area, and representing each area by Linear Block
Addressing (LBA)-based addresses.

Determining the unallocated area may include classifying
the disk or evidence image into an allocated area and an
unallocated area, and listing the unallocated area using
LBA-based addresses.

Collecting the MFT entries may include determining the
MFT entries based on a signature of an $MFT file while
reading the unallocated area on a sector basis; and collecting
the MFT entries while jumping by a size of MFT entries if
the MFT entries are detected.

Generating the MFT partition candidate information by
analyzing the MFT entries may include analyzing $FILE-
NAME attributes of each MFT entry and then determining
whether a file name is “6MFT”; if it is determined that the
file name is “SMFT”, determining whether an MFT identi-
fier value of a header of the MFT entry is 0 (zero); if it is
determined that the MFT identifier value of the MFT entry
header is 0 (zero), determining that the SMFT file is present,
and determining to which one of a data cluster of $MFT and
a data cluster of SMFTMirr the determined $MFT file
corresponds; and storing, as the MFT partition candidate
information, results of determining to which one of the data
cluster of SMFT and the data cluster of $MFTMirr the
determined $MFT file corresponds.

Creating the tree structure may include reading the MFT
partition candidate information and then accessing a corre-
sponding sector; analyzing MFT entries of the correspond-
ing sector and calculating a location of a boot record; if the
location of the boot record has been calculated, calculating
a total size of a volume using an MFT entry corresponding
to a metadata file; determining whether the calculated vol-
ume size satisfies a preset minimum size; parsing the col-
lected MFT entries if it is determined that the calculated
volume size satisfies the preset minimum size; and restoring
parsed results to a tree structure.

Calculating the location of the boot record may include
analyzing MFT entry #0 of SMFT; accessing $DATA attri-
butes of the MFT entry #0; calculating a file size of SMFT
from a non-resident attribute header of the SDATA attributes
by using a real attribute size item; analyzing a Cluster Run
List from the non-resident attribute header of the $DATA
attributes and obtaining a location value of a starting cluster

US 9,465,694 B2

3

of the SMFT and a total size value of clusters; and calcu-
lating a location of the boot record using the location value
of the starting cluster of the SMFT and the total size value
of the clusters.

Calculating the location of the boot record may include
calculating a difference between a physical sector offset of
a file starting location of the $MFT and an offset value
obtained by converting the starting cluster of the SMFT into
a sector offset, thus calculating the location of the boot
record, which is a starting point of the volume.

Calculating the total size of the volume may include
analyzing the MFT entry corresponding to the metadata file;
obtaining information of the metadata file using a real
attribute size item of a non-resident attribute header of
$DATA attributes of the MFT entry; and calculating a total
number of sectors of the volume based on the information of
the metadata file.

The metadata file may be an undeleted metadata file from
among a $Bitmap file corresponding to MFT entry #6, a dot
(.) file corresponding to MFT entry #5, and a $BadClus file
corresponding to MFT entry #8.

In accordance with another aspect of the present invention
to accomplish the above object, there is provided an appa-
ratus for recovering a partition based on file system meta-
data, including an unallocated area determination unit for
determining an unallocated area in a disk or an evidence
image; a Master File Table (MFT) entry collection unit for
collecting MFT entries from the unallocated area; an MFT
entry analysis unit for generating MFT partition candidate
information by analyzing the MFT entries; and an MFT
partition creation unit for creating information enabling a
layout of a partition to be reconfigured based on the MFT
partition candidate information, and creating a tree structure
using the created information and the MFT entries.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects, features and advantages of
the present invention will be more clearly understood from
the following detailed description taken in conjunction with
the accompanying drawings, in which:

FIG. 1 is a diagram illustrating the status of a disk layout
when a conventional disk is destroyed;

FIG. 2 is a configuration diagram showing a system for
recovering a partition based on file system metadata to
which the present invention is applied;

FIG. 3 is a configuration diagram showing an apparatus
for recovering a partition based on file system metadata
according to an embodiment of the present invention;

FIG. 4 is a diagram employed in the description of an
unallocated area determination unit shown in FIG. 3;

FIG. 5 is a flowchart showing a method for recovering a
partition based on file system metadata according to an
embodiment of the present invention;

FIG. 6 is a flowchart showing in detail the step of
collecting MFT entries in FIG. 5;

FIG. 7 is a flowchart showing, in greater detail, the step
of generating MFT partition candidate information based on
MFT entries in FIG. 5;

FIG. 8 is a flowchart showing, in greater detail, the step
of calculating the location of a boot record and the size of a
volume based on MFT partition candidate information and
the step of creating a virtual volume structure and perform-
ing partition recovery in FIG. 5;

FIG. 9 is a flowchart showing, in greater detail, the step
of calculating the location of the boot record in FIG. 8;

10

30

35

40

45

55

60

65

4

FIG. 10 is a flowchart showing, in greater detail, the step
of calculating the size of the volume in FIG. 8;

FIG. 11 illustrates a table representing the types of meta-
data file;

FIG. 12 illustrates a table representing the structures of an
MEFT entry header;

FIG. 13 illustrates a table representing the structures of an
attribute header present in MFT entries;

FIG. 14 illustrates a table representing the structure of
$FILENAME attribute content; and

FIG. 15 illustrates a table representing a scheme for
calculating clusters mapped to the bytes of $Bitmap data.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The present invention may be variously changed and may
have various embodiments, and specific embodiments will
be described in detail below with reference to the attached
drawings.

However, it should be understood that those embodiments
are not intended to limit the present invention to specific
disclosure forms and they include all changes, equivalents or
modifications included in the spirit and scope of the present
invention.

The terms used in the present specification are merely
used to describe specific embodiments and are not intended
to limit the present invention. A singular expression includes
a plural expression unless a description to the contrary is
specifically pointed out in context. In the present specifica-
tion, it should be understood that the terms such as “include”
or “have” are merely intended to indicate that features,
numbers, steps, operations, components, parts, or combina-
tions thereof are present, and are not intended to exclude a
possibility that one or more other features, numbers, steps,
operations, components, parts, or combinations thereof will
be present or added.

Unless differently defined, all terms used here including
technical or scientific terms have the same meanings as the
terms generally understood by those skilled in the art to
which the present invention pertains. The terms identical to
those defined in generally used dictionaries should be inter-
preted as having meanings identical to contextual meanings
of the related art, and are not interpreted as being ideal or
excessively formal meanings unless they are definitely
defined in the present specification.

Embodiments of the present invention will be described in
detail with reference to the accompanying drawings. In the
following description of the present invention, the same
reference numerals are used to designate the same or similar
elements throughout the drawings and repeated descriptions
of the same components will be omitted.

The present invention is characterized in that, for partition
recovery, a partition is recovered based on the file metadata
information of a file system not only in a situation in which
a master boot record or a GPT is deleted or destroyed, but
also in a situation in which a boot record or a backup boot
record is deleted or destroyed.

In other words, the present invention calculates essential
information enabling a partition to be reconfigured by using
a method proposed in the present invention when MFT
entries that maintain the information of a file remain in a
New Technology File System (NTFS) in a situation in which
the configuration information of the partition is destroyed
and a file cannot be read, thus recovering the file. For this,
the location of a boot record, the size of clusters, the total
number of sectors in a volume, etc. are calculated by

US 9,465,694 B2

5

analyzing the attribute information of an $MFT file, and a
deleted partition is recovered by restoring the layout of a
partition. In the present invention, the partition created in
this way is called an MFT partition.

FIG. 2 is a configuration diagram showing a system for
recovering a partition based on file system metadata to
which the present invention is applied.

The system shown in FIG. 2 includes a memory 10, a
processor 20, a storage device 30, an input device 40, a
network 50, and a screen 60.

The memory 10 is a space in which an MFT entry
collection unit 130, an MFT entry analysis unit 140, and an
MET partition creation unit 150 that are core modules for a
partition recovery apparatus are loaded.

The processor 20 operates the modules 130, 140, and 150
loaded in the memory 10 in a multi-threaded manner.

The storage device 30 stores log and results output from
a program in the form of a file.

The input device 40 is provided with a disk or an evidence
image in which the recovery of a partition is to be attempted
by a program. Here, the program is remotely operable even
based on the network 50, and the results thereof are output
and displayed on the screen 60.

FIG. 3 is a configuration diagram showing an apparatus
for recovering a partition based on file system metadata
according to an embodiment of the present invention, and
FIG. 4 is a diagram employed in the description of an
unallocated area determination unit shown in FIG. 3.

An apparatus for recovering a partition based on file
system metadata according to an embodiment of the present
invention includes an access unit 110, an unallocated area
determination unit 120, an MFT entry collection unit 130, an
MET entry analysis unit 140, an MFT partition creation unit
150, and a user interface 160.

The access unit 110 may access data sources of digital
forensics, that is, a hard disk 100 or an evidence image (a
raw [DD] image, an Expert Witness Format [EWF] format,
etc.) 102 that are the target of inquiry and investigation, and
may read the data (that is, the disk 100 or the evidence image
102).

The unallocated area determination unit 120 may analyze
a file system present in the hard disk 100 or the evidence
image 102 and determine an unallocated area (see FIG. 4).

Referring to FIG. 4, the unallocated area will be described
in detail. The unallocated area may be classified into two
types. One type is an unused area, which is an area other than
a currently present partition in the disk 100 or the evidence
image 102. The unused area denotes an empty space
between respective volumes or a space remaining after a last
volume. The other type is an unallocated data area. The
unallocated data area is an area in which data is not stored
in a normal volume (in which data is not allocated).

In this way, the disk 100 or the evidence image 102 is
classified into an allocated area and an unallocated area,
wherein each area is indicated by Linear Block Addressing
(LBA)-based addresses, thus configuring a sector map for
the entire disk or entire evidence image. Due to this, the
unallocated area may be determined. Unlike this, the disk
100 or the evidence image 102 may be classified into an
allocated area and an unallocated area, and only the unal-
located area may be listed using LBA-based addresses
because a search target required to recover a deleted parti-
tion is the unallocated area. By means of this, the unallo-
cated area may be simply determined. The unallocated area
that is targeted in the present invention includes both an
unused area and an unallocated data area. If all areas
enabling a partition to be recognized, such as a master boot

10

15

20

25

30

35

40

45

50

55

60

65

6

record or a GPT, are destroyed, the entire disk 100 or
evidence image 102 is the target of the unallocated area.

In FIG. 3, the MFT entry collection unit 130 may deter-
mine MFT entries based on the signature of an $MFT file,
that is, “FILE” character string (offsets 0 to 3), while reading
the unallocated area on a sector basis. The MFT entry
collection unit 130 may collect MFT entries while jumping
by the size (typically, 1,024 bytes) of detected MFT entries
if the MFT entries have been detected, and may store the
information of the corresponding MFT entries.

The MFT entry analysis unit 140 may search for the data
cluster of SMFT or $MFTMirr (SMFT Mirror) using the
results stored by the MFT entry collection unit 130, and
generate information about MFT partition candidates.

The MFT partition creation unit 150 may analyze MFT
entries based on the MFT partition candidate information
generated by the MFT entry analysis unit 140 and calculate
the core information (for example, location) of a boot record
enabling the layout of the partition to be reconfigured.
Further, the MFT partition creation unit 150 may configure
a virtual boot record and create volume information based
on the calculated information. Furthermore, the MFT parti-
tion creation unit 150 may parse the MFT entries on a file
basis, and create a tree structure of the file system. As the
tree structure is created, a deleted or destroyed partition may
be recovered.

The user interface unit 160 provides the function of
adding the recovered partition as a virtual volume and
allowing an investigator to use the virtual volume in the
same manner as a normal volume.

In accordance with FIG. 3 described above, MFT entries
are collected by searching the disk 100 or the evidence
image 102 on a sector basis. Then, information of the MFT
entries is analyzed and then core information enabling the
layout of the partition to be reconfigured is calculated. Based
on the information calculated in this way, the tree structure
of'the file system is created, and the virtual volume structure
is configured, with the result that the partition may be
recovered.

FIG. 5 is a flowchart showing a method for recovering a
partition based on file system metadata according to an
embodiment of the present invention.

First, at step S10, the access unit 110 may access a data
source and read data (that is, disk 100 or evidence image
102) from the data source.

At step S20, the unallocated area determination unit 120
analyzes a file system present in the disk 100 or the evidence
image 102 and then determines an unallocated area.

At step S30, the MFT entry collection unit 130 collects
MEFT entries from the unallocated area determined by the
unallocated area determination unit 120. The MFT entry
collection unit 130 is operated in a multi-threaded manner
depending on the environment of the system. Step S30 will
be described in detail later with reference to FIG. 6.

At step S40, the MFT entry analysis unit 140 analyzes the
MEFT entries collected by the MFT entry collection unit 130
and generates MFT partition candidate information. Step
S40 will be described in detail later with reference to FIG.
7.

At step S50, the MFT partition creation unit 150 calcu-
lates the location of a boot record and the size of a volume
based on the MFT partition candidate information. Step S50
will be described in detail later with reference to FIG. 8.

Thereafter, at step S60, the MFT partition creation unit
150 parses the MFT entries on a file basis and then creates
atree structure (virtual volume structure), with the result that

US 9,465,694 B2

7

the recovery of the partition is performed. Step S60 will be
described in detail later with reference to FIG. 8.

FIG. 6 is a flowchart showing, in detail, the step S30 of
collecting MFT entries in FIG. 5. The MFT entry collection
unit 130 is operated as in the flowchart of FIG. 6. The MFT
entry collection step S30 is performed such that the MFT
entry collection unit 130 searches each sector of the unal-
located area for MFT entries based on a signature.

First, the unallocated area is read on a sector basis at step
S110.

Then, the header of each MFT entry from the read sector
is analyzed at step S112.

Thereafter, “FILE” character string (offsets 0 to 3) (see
FIG. 12) that is the signature of the MFT entry header is
searched for at step S114.

As a result of search, if the signature of the MFT entry
header is correct (Yes at step S114), the location of the
corresponding sector is stored in an MFT candidate table at
step S116.

Thereafter, the location of a subsequent sector is read by
jumping to the sector by the size of MFT entries and the
process returns to step S112 where a procedure starting from
step S112 is repeated at step S118.

The above-described operation is terminated after reading
to the location of the last sector of the disk 100 or the
evidence image 102 at step S120.

FIG. 7 is a flowchart showing in detail the step S40 of
creating the MFT partition candidate information based on
the MFT entries in FIG. 5. The MFT entry analysis unit 140
is operated as in the flowchart of FIG. 7.

First, the information of MFT entries collected by the
MEFT entry collection unit 130, that is, information of MFT
entries stored in the MFT candidate table, is read at step
S130, and the corresponding sector is accessed at step S132.

Thereafter, the SFILENAME attribute of each MFT entry
is analyzed and it is determined whether a file name is
“SMFT” (unicode type)(see FIG. 14) at step S134.

When the file name is “$MFT” (unicode type), it is
determined whether the values of offsets 44 to 47 (see FIG.
12) are 0 (zero) at step S136.

When the values of offsets 44 to 47 are 0 (zero), it is
determined that an $MFT file is present. Further, it is
determined whether the determined $MFT file is the data
cluster of $MFT or the data cluster of SMFTMirr at step
S138. Here, the data cluster of the $MFTMirr includes four
MFT entries, that is, $MFT, $MFTMirr, $LogFile, and
$Volume. In other words, when determining whether only
metadata files such as $MFT, $MFTMirr, $LogFile, and
$Volume are present by searching for MFT entries, it may be
easily determined if the SMFT file corresponds to the data
cluster of SMFT or the data cluster of $MFTMirr. Informa-
tion determined in this way is referred to as “MFT partition
candidate information.”

Further, the results of determination at step S138 are
stored as the MFT partition candidate information in the
MEFT candidate table at step S140.

Next, after a subsequent MFT entry stored in the MFT
candidate table has been read, a procedure starting from step
S132 is repeated at step S142.

The above-described operation is terminated after reading
to and processing the last entry of the MFT candidate table.

FIG. 8 is a flowchart showing in detail the step S50 of
calculating the location of the boot record and the size of the
volume based on the MFT partition candidate information
and the step S60 of creating the virtual volume structure and

10

20

40

45

50

55

8

performing the recovery of the partition in FIG. 5. The MFT
partition creation unit 150 is operated as in the flowchart of
FIG. 8.

First, MFT partition candidate information is read at step
S150, and then the corresponding sector is accessed at step
S152.

Next, the location of a boot record is calculated at step
S154. Here, a method for calculating the location of the boot
record will be described in detail later with reference to FIG.
9.

When the location of the boot record is calculated, it is
determined whether there is a metadata MFT entry (e.g.,
$Bitmap or the like) to know the entire size of a volume at
step S156.

When there is a metadata MFT entry, the size of the
volume is calculated at step S158. In contrast, when there is
no metadata MFT entry and it is impossible to calculate the
total size of the volume, the size of an area ranging from the
corresponding sector to a last sector is calculated, and the
setting of defaults is performed so that the area may be
calculated to have the maximum size at step S160. Here, the
default size of the volume is set based on the size ranging
from the corresponding sector to the last sector of the disk
100 or the evidence image 102. A method of calculating the
size of the volume will be described in detail later with
reference to FIG. 10.

After the size of the volume has been obtained in this way,
it is checked whether the obtained volume size satisfies the
preset minimum size of the volume at step S162.

If the obtained volume size satisfies the preset minimum
size of the volume, MFT entries are parsed at step S164.
Here, the minimum size of the volume may be designated
based on 8 MB that is a minimum size enabling a partition
to be created.

Then, based on the parsed MFT entries, a tree structure is
created, and then a virtual volume that was not present is
created at step S166.

Thereafter, subsequent MFT partition candidate informa-
tion is read at step S168, and a procedure starting from step
S152 is repeated.

Further, if no additional MFT partition candidate infor-
mation is present, the process is terminated.

FIG. 9 is a flowchart showing in detail the step S154 of
calculating the location of the boot record in FIG. 8.

First, the MFT entry #0 of an SMFT file is analyzed at step
S170, and then $DATA attributes are parsed at step S172.

Thereafter, the size of the SMFT file (MFTTotalBytes) is
obtained based on an item for the real size (offsets 48 to 55)
of attribute content in the non-resident attribute header of the
$DATA attribute header shown in FIG. 13 at step S174.

Thereafter, by analyzing a Cluster Data Run List (offsets
64 to a variable value) from the non-resident attribute header
of $DATA attributes, the starting cluster address (MFTS-
tartClusterOffset) of the SMFT file and the total number of
clusters of the SMFT file (MFTTotalCluster) are obtained at
step S176.

Next, it is possible to calculate the location of the boot
record based on the values obtained at steps S174 and S176
at step S178.

A formula for calculating the location of the boot record
is represented by the following equations (1) and (2):

MPBytesPerCluster=MFTTotalBytes/MFTTotalClus-
ter

M

where MPBytesPerCluster denotes bytes per cluster used in
the recovered MFT partition, MFTTotalBytes denotes the

US 9,465,694 B2

9
size of the $MFT file, and MFT TotalCluster denotes the total
number of clusters in the $MFT file.

MPBROffset=MF TCurrentPhysicalSectorOffset—
(MFTStartClusterOffset* MPBytesPerCluster/512

bytes) @

where MPBROffset denotes the physical sector offset
address of the boot record of the recovered MFT partition,
MEFTCurrentPhysicalSectorOffset denotes the physical sec-
tor offset of the $MFT file stored as MFT partition candidate
information, and MFTStartClusterOffset denotes the starting
cluster address of the SMFT file.

Meanwhile, MFTCurrentPhysicalSectorOffset is divided
by 512 bytes corresponding to a reference value for normal
sectors, and is then calculated as physical sectors. Further, in
a disk providing an extended disk scheme, a reference value
for sectors may be a multiple of 512 bytes. When a basic unit
for sectors differs, calculation is performed in consideration
of such a sector unit.

In an example in which the above Equations (1) and (2)
are calculated, if MFTTotalCluster denotes 54,080 clusters,
and MFTTotalBytes denotes 221,5211,680 bytes, MPBytes-
PerCluster=221,511,680/54,080=4,096 bytes is obtained,
and MPBROffset=6,498,304-(786,432%4,096/512)=206,
848 sector offsets is obtained.

That is, the location of the boot record is obtained by
converting the starting cluster of the SMFT file (that is,
MEFTStartClusterOffset) into a sector offset in MFTCurrent-
PhysicalSectorOffset that is the physical sector offset at the
starting location of the $MFT file. Therefore, when a dif-
ference between the physical sector offset and the converted
sector offset is calculated, the location of the boot record that
is the starting point of the volume may be detected. The
location of the boot record at this time is the location of
sector offsets 206,848 that is a basis of the physical sector.
Further, even in the case of the data cluster of $SMFTMirr,
when a reference value for a Cluster Data Run List is applied
to the above Equations, the location of a boot record may be
calculated in the same manner, and thus an additional
description thereof will be omitted in the present invention.

FIG. 10 is a flowchart showing in greater detail the step
S518 of calculating the size of the volume in FIG. 8.

The size of a volume may be calculated by means of
$Bitmap that is a metadata file related to the allocation
information of the volume among MFT entries or a metadata
file such as $BadClus related to the total size of the volume.
The term “metadata file” denotes a system file used by the
NTFS to manage the volume, and the types of metadata files
are illustrated in FIG. 11.

In the following example that will be described, a method
of obtaining the volume size using a $Bitmap metadata file
will be described.

A $Bitmap file is an MFT entry corresponding to the MFT
Identifier (ID) #6 of the $MFT file. Therefore, $DATA
attributes are parsed by analyzing the MFT entry corre-
sponding to the MFT identifier #6 of the SMFT file at steps
S180 and S182.

Thereafter, the size of $Bitmap (BitmaplLogicalSize) is
obtained using the real size item of attribute content that is
an item corresponding to offsets 48 to 55 of the non-resident
attribute header of $DATA attributes in FIG. 13 at step S184.

Thereafter, the total size of the entire volume, that is, the
total number of sectors (MPTotalSector) in the volume, is
obtained using a characteristic that 1 bit in $Bitmap may be
used to determine whether one cluster has been allocated at
step S186.

20

25

40

45

50

55

10

A formula for obtaining the total number of sectors in the
volume of a virtually created MFT partition is represented
by the following Equations (3) and (4):

MPTotalSector=BitmapLogicalSize*8*MPBytesPetCluster/512

bytes—1 3)
where MPTotalSector denotes the total sector size of the
volume, and BitmapLogicalSize denotes the real byte size of

the $Bitmap metafile.

MPTotalSize=MPTotalSector*512 bytes 4

where MPTotalSize denotes the total byte size of the vol-
ume.

By using the data of $Bitmap, 1 byte may represent
whether 8 clusters have been allocated. Clusters correspond-
ing to N-th present bytes may be calculated, as shown in
FIG. 15. Therefore, the total number of sectors in the volume
is calculated by multiplying 8(1 byte=8 bits) by the total size
of $Bitmap (byte unit) and additionally multiplying the
number of sectors per cluster by a resulting value. There is
a need only to subtract one sector from the calculated total
number of sectors due to the characteristic that the backup
boot record is not included in the total number of sectors in
the volume.

In an example in which Equations (3) and (4) are calcu-
lated, if BitmaplLogicalSize is 20,692,288 bytes, MPTotal-
Sector=20,692,288 bytes*8*4,096/512 bytes—1=1,324,306,
431 is obtained, and MPTotalBytes=1,324,306,432x
512=678,044,893,184 bytes is obtained.

That is, the total number of sectors in the volume is
1,324,306,431. If this value is converted into the total
capacity (MPTotalBytes), it can be seen that the volume has
a size of about 631 GB.

In the above embodiment, when the total number of
sectors in the volume is calculated, a description has been
made based on the MFT entries of $Bitmap (MFT Identifier
#6 metadata), but a formula for calculating the total number
of sectors in the volume may also be implemented even
using the MFT entries of $BadClus (MFT Identifier #38
metadata) and the MFT entries of dot (.\)(MFT Identifier #5
metadata). Therefore, if the MFT entry of $Bitmap is
damaged, the total size of the volume may be calculated
using the MFT entry of another metadata file.

Values extracted during a procedure for calculating the
location of a boot record that has been centrally described in
the present invention may be utilized as basic information
upon analyzing a file system. A subsequent procedure may
be performed such that the file information of MFT entries
is parsed and a tree structure of the file system is completed,
thus enabling a deleted or destroyed partition to be recov-
ered.

In accordance with the present invention having the above
configuration, if all or some of MFT entries remain in a disk
or an evidence image (DD, EWF format, etc.) in which a
master boot record and a GPT that configure disk informa-
tion and a boot record and a backup boot record that
configure volume information are deleted, core information
necessary for the configuration of a volume is calculated
using only MFT entry information, and thereafter a virtual
volume may be created and may be accessed to the file in the
same manner as a normal volume.

Further, the present invention may perform calculation
using MFT entry information so as to obtain essential
information of a boot record required for analysis of a file
system and thereafter recover a partition based on the results
of calculation. In particular, the starting location and the
total size of a partition may be precisely calculated to

US 9,465,694 B2

11

configure the entire layout of a volume, so that the location
of a cluster in which data of a file is present in the
corresponding MFT entry may be precisely accessed, thus
enabling the file to be recovered.

Unlike an existing partition recovery technique for per-
forming recovery by searching for a boot record and a
backup boot record, the present invention enables the recov-
ery of a partition even if information about a boot record and
a backup boot record is not present and only the metadata of
a file system is present.

The present invention is advantageous in that the recovery
of a partition is possible even if MFT entries are lost and
some of MFT entries are present, thus enabling the partition
to be recovered using only the information of the remaining
MET entries even if a large amount of core information in
a disk is destroyed.

As described above, although the configuration of the
present invention has been described in detail with reference
to preferred embodiments of the present invention, those
skilled in the art to which the present invention belongs will
understand that the present invention may be implemented
in other detailed forms without changing the technical spirit
or essential features of the present invention. For example,
the present invention will be implemented in various forms,
such as a computer-readable storage medium for storing a
program for implementing the partition recovery method
according to the present invention. Therefore, the above-
described embodiments should be understood to be illustra-
tive rather than restrictive in all aspects. The scope of the
present invention should be defined by the scope of the
accompanying claims rather than the above detailed descrip-
tion, and all changes or modifications derived from the
claims and equivalents thereof should be included in the
scope of the present invention.

What is claimed is:
1. A method for recovering a partition based on file system
metadata, comprising:

determining, by an unallocated area determination unit, an
unallocated area in a disk or an evidence image;

collecting, by a Master File Table (MFT) entry collection
unit, MFT entries from the unallocated area;

generating, by an MFT entry analysis unit, MFT partition
candidate information by analyzing the MFT entries;
and

creating, by an MFT partition creation unit, information
enabling a layout of a partition to be reconfigured based
on the MFT partition candidate information, and cre-
ating a tree structure using the created information and
the MFT entries,

wherein creating the tree structure comprises:

reading the MFT partition candidate information and then
accessing a corresponding sector;

analyzing MFT entries of the corresponding sector and
calculating a location of a boot record;

if the location of the boot record has been calculated,
calculating a total size of a volume using an MFT entry
corresponding to a metadata file;

determining whether the calculated volume size satisfies
a preset minimum size;

parsing the collected MFT entries if it is determined that
the calculated volume size satisfies the preset minimum
size; and

restoring parsed results to a tree structure.

2. The method of claim 1, wherein collecting the MFT

entries comprises:

5

20

25

30

35

40

45

50

55

60

65

12

determining the MFT entries based on a signature of an
SMFT file while reading the unallocated area on a
sector basis; and

collecting the MFT entries while jumping by a size of

MFT entries if the MFT entries are detected.

3. The method of claim 1, wherein generating the MFT
partition candidate information by analyzing the MFT
entries comprises:

analyzing $SFILENAME attributes of each MFT entry and

then determining whether a file name is “SMFT”;

if it is determined that the file name is “$MFT”, deter-

mining whether an MFT identifier value of a header of
the MFT entry is O (zero);

if it is determined that the MFT identifier value of the

MFT entry header is O (zero), determining that the
SMFT file is present, and determining to which one of
a data cluster of $MFT and a data cluster of SMFTMirr
the determined $MFT file corresponds; and

storing, as the MFT partition candidate information,

results of determining to which one of the data cluster
of $MFT and the data cluster of SMFTMirr the deter-
mined $MFT file corresponds.

4. The method of claim 1, wherein calculating the location
of the boot record comprises:

analyzing MFT entry #0 of $MFT;

accessing $DATA attributes of the MFT entry #0;

calculating a file size of $MFT from a non-resident

attribute header of the SDATA attributes by using a real
attribute size item;

analyzing a Cluster Run List from the non-resident attri-

bute header of the $DATA attributes and obtaining a
location value of a starting cluster of the $MFT and a
total size value of clusters; and

calculating a location of the boot record using the location

value of the starting cluster of the SMFT and the total
size value of the clusters.

5. The method of claim 1, wherein calculating the location
of the boot record comprises:

calculating a difference between a physical sector offset of

a file starting location of the SMFT and an offset value
obtained by converting the starting cluster of the SMFT
into a sector offset, thus calculating the location of the
boot record, which is a starting point of the volume.

6. The method of claim 1, wherein calculating the total
size of the volume comprises:

analyzing the MFT entry corresponding to the metadata

file;

obtaining information of the metadata file using a real

attribute size item of a non-resident attribute header of
$DATA attributes of the MFT entry; and

calculating a total number of sectors of the volume based

on the information of the metadata file.

7. The method of claim 6, wherein the metadata file is an
undeleted metadata file from among a $Bitmap file corre-
sponding to MFT entry #6, a dot (.) file corresponding to
MFT entry #5, and a $BadClus file corresponding to MFT
entry #8.

8. The method of claim 1, wherein determining the
unallocated area comprises classifying the disk or evidence
image into an allocated area and an unallocated area, and
representing each area by Linear Block Addressing (LBA)-
based addresses.

9. The method of claim 1, wherein determining the
unallocated area comprises classifying the disk or evidence
image into an allocated area and an unallocated area, and
listing the unallocated area using [.LBA-based addresses.

US 9,465,694 B2

13

10. An apparatus for recovering a partition based on file
system metadata, comprising:

an unallocated area determination unit for determining an

unallocated area in a disk or an evidence image;

a Master File Table (MFT) entry collection unit for

collecting MFT entries from the unallocated area;

an MFT entry analysis unit for generating MFT partition

candidate information by analyzing the MFT entries;
and

an MFT partition creation unit for creating information

enabling a layout of a partition to be reconfigured based
on the MFT partition candidate information, and cre-
ating a tree structure using the created information and
the MFT entries,

wherein the MFT partition creation unit is configured to

analyze MFT entries of a corresponding sector by
reading the MFT partition candidate information, cal-
culate a location of a boot record, and calculate a total
size of a volume using an MFT entry corresponding to
a metadata file, and is configured to, if the calculated
volume size satisfies a preset minimum size, parse the
collected MFT entries and restore parsed results to a
tree structure.

11. The apparatus of claim 10, wherein the MFT entry
collection unit is configured to determine the MFT entries
based on a signature of an $MFT file while reading the
unallocated area on a sector basis, and collect the MFT
entries while jumping by a size of MFT entries if the MFT
entries are detected.

12. The apparatus of claim 10, wherein the MFT entry
analysis unit is configured to analyze $SFILENAME attri-
butes of each MFT entry, and if it is determined that a file
name is “$MFT”, determine whether an MFT identifier
value of a header of the MFT entry is 0 (zero), and is

10

15

20

25

30

14

configured to, if it is determined that the MFT identifier
value of the MFT entry header is 0 (zero), store results of
determining to which one of a data cluster of $MFT and a
data cluster of SMFTMirr an $MFT file corresponds, as the
MEFT partition candidate information.

13. The apparatus of claim 10, wherein the MFT partition
creation unit is configured to access $DATA attributes of the
MFT entry #0 of $MFT, calculate a file size of SMFT from
a non-resident attribute header of the $DATA attributes by
using a real attribute size item, analyze a Cluster Run List
from the non-resident attribute header of the $DATA attri-
butes, obtain a location value of a starting cluster of the
$MFT and a total size value of clusters, and calculate a
location of the boot record using the location value of the
starting cluster of the SMFT and the total size value of the
clusters.

14. The apparatus of claim 10, wherein the MFT partition
creation unit calculates a difference between a physical
sector offset of a file starting location of the $MFT and an
offset value obtained by converting the starting cluster of the
$MFT into a sector offset, thus calculating the location of the
boot record, which is a starting point of the volume.

15. The apparatus of claim 10, wherein the MFT partition
creation unit obtains information of the metadata file using
a real attribute size item of a non-resident attribute header of
$DATA attributes of the MFT entry corresponding to the
metadata file, and calculates a total number of sectors of the
volume based on the information of the metadata file.

16. The apparatus of claim 15, wherein the metadata file
is an undeleted metadata file from among a $Bitmap file
corresponding to MFT entry #6, a dot (.) file corresponding
to MFT entry #5, and a $BadClus file corresponding to MFT
entry #8.

